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Abstract ─ The K-Nearest Neighbor Attractor-based Neural 

Network and the Optimal Linear Discriminatory Filter Classifier 
are feature-based classifiers that are trained via supervised 
learning using a training set of feature vectors.  They were 
developed by the author and successfully used in several 
applications where they were "and-ed."  Results using these 
classifiers have been published, but comprehensive descriptions of 
them have not appeared in the literature.  This paper presents 
their detailed descriptions. 
 

I.  INTRODUCTION 
 

The K-Nearest Neighbor Attractor-based Neural Network 
(KNNANN) is a probabilistic-type of neural network.  It was 
developed based on concepts taken from the Probabilistic 
Neural Network (PNN [1]), Reduced Coulomb Energy neural 
network (RCE [2]), and the K-Nearest Neighbor classifier 
(KNN [2]).  It estimates the joint posteriori probability, 
Prob(class | feature vector), from training data.  Specifically, 
the KNNANN training process produces a joint posteriori 
histogram of the training set under the constraint of equally 
likely classes even if the training set is unbalanced (i.e., each 
class has a different number of training samples.)  

The Optimal Linear Discriminatory Filter Classifier 
(ODFC) is a classifier that uses a bank of linear classifiers that 
are referred to as linear discriminatory filters.  The coefficients 
of the linear classifiers are found by solving a generalized 
eigenvalue problem.  There are generic similarities between 
ODFC optimization approach and the one described in [3].  
The outputs of the linear classifiers are combined to produce an 
overall statistic that is used to determine class membership. 

These two classifiers are complementary in how they 
construct decision boundaries in feature space.  The KNNANN 
uses multiple hyperspheres (also referred to as attractors) to 
define class boundaries, and the ODFC uses multiple 
hyperplanes.  As such they have been combined by the author 
using various "anding" schemes, which resulted in overall 
performance that was much better than the performance of 
either one alone.  

A desirable attribute of both classifiers is that their training 
processes are not iterative and are computationally very fast.  
This permits the designer to efficiently evaluate many feature 
subsets from large set of candidate features and select the 
subset that performs "best" or "good enough," thereby 
overcoming Bellman's well-known curse of dimensionality [4]. 

These classifiers were developed by the author several 
years ago and used in several applications [5-8].  In section III 
the KNNANN is described in detail, and in section IV the 
ODFC is described.  
 

II.  FEATURE VECTOR NORMALIZATION 
 
 Both classifiers perform better if feature vectors are 
normalized.  The normalization process is described in this 
section.  Define 
   

x(k)  = k-th feature vector from the training set.            (1) 
class(k)  = class of x(k) ∈ {1, 2, …, Nc} 

where 
Nc = Number of classes 
k = 1, 2, … N 
N = Number of training feature vectors 
M(i) = Number of training vectors belonging to class i 
 

 Let xj(k) denote the j-th feature component of the k-th 
feature vector.  The normalized feature component is given by 
 

xj(k; "normalized") =                                                      (2) 
                    [ (xj(k; "original") - bias(j)  ] / scale(j) 

where 
w(k) = sample weights                                                   (3) 
        = 1 / M(class(k))    for k = 1, 2, ... N 

 
         N 
W =  ∑  w(k)                                                                  (4) 
       k=1 
 
                          N 
bias(j) = (1/W)  ∑  w(k) xj(k)                                         (5) 
                        k=1 
 
                            N 
scale(j) = (1/W)  ∑  w(k) | xj(k) - bias(j) |                      (6) 
                          k=1 

 
 Regarding this normalization process: (1) scale and bias 
are computed using only the training data and must be saved 
for application to any new feature vector, (2) the use of w(k) 
imposes an equally likely class probability assumption.  This 
prevents any class with a much greater number of samples than 
the other classes from dominating the calculations.  For the 
remainder of the paper, the feature vectors x(k) are assumed to 
be normalized. 
 As an aside, in some applications it is sometimes 
beneficial to base the determination of the bias and scale on 
samples from one key class (or a few key classes) rather than 
all classes as presented here.  
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III.  KNNANN 
 

 The first stage of the KNNANN Training algorithm 
determines the number of attractors (hyperspheres) that will 
contain all the feature vectors from training set, their center 
locations in feature space, and their associated radii.  Let 
 

c(L) = center of attractor L                                             (7) 
r(L) = radius of attractor L 

 
 The second stage of the KNNANN Training algorithm 
determines p(i, L), the estimated probability that an object 
belongs to class i given that its feature vector is contained in 
attractor L.   
 The KNNANN Training algorithm uses some selectable 
design parameters: α, β, and γ(i): 
 

α = nearest neighbor factor                                            (8) 
where 

0 < α < 1 
Recommend: α  = 0.5 

 
β = radius dither parameter                                            (9) 

where 
0 ≤ β < 0.5 
Recommend: β = 0.005 

 
γ(i) =  removal  factor for i = 1, 2, ... Nc                      (10) 

where 
0 ≤ γ(i) ≤ 1 
Recommend: γ(i) = 0.0   if M(i) is small 
                             = 0.5   if M(i) is of modest size 
                             = 1.0   if M(i) is large 

 
 The selection and usage of these parameters will be 
discussed later, but first the training algorithm is presented. 
 The KNNANN uses a vector norm, which will be denoted 
as norm(u) for the norm of vector u.  The standard L2 norm is 
recommended.  Other norms can be used to derive different 
variants of the KNNANN. 
 
KNNANN Training Algorithm 
 
1. Initialization: 
 Set L =0 
    kref  = 0 
     flag(k) = 0   for k = 1, 2, ... N 
2. Set  kref = kref + 1 
 If  kref  > N 
   Then: Go to step 12 
   Else:  If flag(kref) = 0 
    Then: Go to step 3 
    Else: Go to step 2 
3. Set   L = L+1 
         c(L) = center of attractor 
                      = x(kref) 

4. Set   d(k) = norm( x(k) - c(L) )  and 
              v(k) = [ M(class(k)) ]-1/2   for k = 1, 2, ... N. 
5. Sort d(k) from smallest to largest.  Let km be the sorted 

index list; i.e., d(k1) ≤ d(k2) ≤ ...≤ d(kN). 
6. Find the smallest M such that 
                 M 
           ∑  v(km) ≥ α 

   m=1 
7. Set   r(L) = radius of the attractor 
                 =  (1+ β) d(kM) 
8. Set   Q = 0  
               q(i) = 0   for i = 1, 2, ... Nc. 
9. For m = 1, 2, ... N 
   Set   k = km 
   If   d(k) ≤ r(L), 
         Then:  w = 1 / M(class(k)) 
                                Q = Q + w 
                                q(class(k)) = q(class(k)) + w 
       If   d(k) ≤ γ(class(k)) r(L) 
                             Then:  flag(k) = 1 
                              Else:  continue 
          Else:  Go to step 10. 
       End of For m loop 
10. For i = 1, 2, ... Nc 
              p(i, L) = q(i) / Q 
 End of For i loop 
11. Return to step 2 
12. Training is complete. 
 
 When training is completed, L attractors have been 
identified with radii r(j), centers c(j), and estimated class 
probabilities p(i, j) for i = 1, 2, ... Nc and j = 1, 2, ... L.  p(i, j) 
is an estimate of posteriori probability, 
Prob(class i  | x = c(j) ), under the assumption of equally likely 
class probabilities.   As desired, note that 
 

  Nc 
  ∑   p(i, j)  =  1                                                           (11) 
 i=1 
 

 The following algorithm describes how this information is 
used to determine the class of an arbitrary feature vector, x.  
The evaluation algorithm uses a single selectable design 
parameter, h. 
 

h = attractor radius expansion factor                            (12) 
where 

0 ≤ h 
Recommend: h = 1.5  

 
 The selection and usage of parameters h will be discussed 
later, but first the evaluation algorithm is presented. 
 
KNNANN Evaluation algorithm 
 
1. Initialize:    Q = 0, 
                    q(i) = 0    for i = 1, 2, ... Nc 



  

2. For j = 1, 2, ... L 
      d = norm(x - c(j)) 
      If   d ≤ h r(j) 
       Then:   w = 1 / (d + 0.000001) 
      Q = Q + w 
      For i = 1, 2, ... Nc 
            q(i) = q(i) + w p(i, j) 
      End of For i loop 
       Else:  continue 
 End of For j loop 
3. If   Q > 0 
       Then:  For i = 1, 2, ... Nc 
                               z( i | x ) = q(i) / Q 
             End of For i loop 
       Else:   For i = 1, 2, ... Nc 
                               z( i | x ) = 0 
                        End of For i loop 
 
 If Q > 0 upon completion of these three steps, z( i | x ) is 
an estimate of Prob (class i | x).  It is easy to show that the sum 
of z( i | x ) over i is one.  If Q = 0, then x did not belong to the 
neighborhood of any attractor.  In this case, it is assumed that x 
is statistically dissimilar to the training set.  Therefore there is 
no basis for assigning a class; the class is declared "unknown." 
 
 Let 

Imax  = argmax( z( i | x ) )                                             (13) 
                   i 
  
Iref  = argmax( z( i | x ) ) 
           i ≠ Imax 
 
T = a designer selectable classification threshold. 

 
The classification rule is given by: 
If z(Imax | x) ≥ T z(Iref | x), then class = Imax; otherwise the 
class is considered uncertain. 
 For a two-class problem (e.g., class 1 = target and 
class 2 =  nontarget), the classification rule is given by: 
If z( 1 | x ) >  T z( 2 | x ), then class = 1; otherwise class = 2. 
 
 T can be selected to adjust the operating point for 
probability of classification versus probability of false alarm.  
Furthermore, if a sufficiently large set of feature vectors is 
available with their associated class labels, the Receiver 
Operator Characteristic curve can be estimated by varying T.    
(So as not to be fooled by possible overtraining, one should use 
feature vectors that were not used in the training to generate 
the ROC curve.) 
 Other variants of interpolation can be used in the KNN 
Evaluation algorithm by simply changing the interpolation 
weight, w, in step 2.  For example, one could use 
 

w = exp( -a | d / r(j) |b )                                                (14) 
 
for appropriate choices of parameters a > 0 and b > 0. 
 
 

KNNANN design parameters 
 
 The KNNANN training algorithm estimates a joint 
histogram of the training data where each attractor represents a 
volume in feature space in which one counts the number of 
training samples that belong to each class.  The KNNANN 
counting process, which is used to size the attractor and 
determine the sample probabilities associated with it, performs 
two key functions: (1) it balances the training data when the 
classes may have a disparate number of samples, and (2) it 
sizes each attractor so that the number of samples it contains is 
compatible with the size of the training set.  To illustrate, 
suppose one is creating a histogram from M samples where the 
histogram volumes (attractors) that cover feature space can 
vary in size.  Assume each volume contains, on the average, 
Ms samples and that Mv volumes contain all M samples.  If the 
volumes are disjoint, then M = Ms Mv.  The question is how 
many volumes Mv should one strive to have and how many 
samples Ms per volume.  We would like Ms to be large so that 
the sample probabilities for each volume can be accurately 
estimated.  However, we would also like Mv to be large so that 
the joint histogram has many small attractors that have 
sufficient resolution to accurately approximate the continuous 
joint probability density over all of feature space.  A natural 
way to balance Mv versus Ms is by maximizing 
 

J(Ms, Mv) = min ( α2 Mv, Ms )                                     (15) 
 
under the constraint that Mv Ms = M where parameter α is a 
tradeoff weight.  The solution is given by 
 

Ms = α  M1/2                                                                               (16) 
and 

Mv = (1/α) M1/2 
 
(We are ignoring the fact the solution is, in general, not an 
exact integer because it is not critical to this discussion.) 
 Note that tradeoff weight, α, is the "nearest neighbor 
factor" that was defined earlier in Eq 8.  
 Furthermore note that Ms(M) = α M1/2 has the asymptotic 
properties that 
 

  Lim     Ms(M) = ∞                                                       (17) 
M→∞ 
 
  Lim     Ms(M) / M = 0 
M→∞ 

 
 These properties imply that the joint histogram will 
approach the true joint probability density as M approaches 
infinity. 
 However we must also keep in mind that the training set 
may not be balanced (i.e., some classes may have more 
training samples than others).  We do not want the training 
process to favor one class over the others simply because it has 
more samples.  Accordingly, each sample is weighted by 



  

[ M(class(k) ) ]-1/2.                                                        (18) 
. 
 Then the radius of an attractor is given as the smallest 
radius such that the sum of the weights of the samples 
contained in the attractor is greater than or equal to parameter 
α.  This is implemented in steps 4, 5, and 6 of the KNNANN 
Training algorithm.  For the special case where the attractor 
contains only class i, one can show that the number of samples 
in the attractor is the smallest integer that is greater than or 
equal to 

α [ M(i) ]1/2.                                                                  (19) 
 
 To determine the sample probabilities within an attractor 
and account for unbalanced training data, each sample is 
weighted by  

1 / M(i).                                                                         (20) 
 
 By using these weights in a counting procedure to 
determine sample probabilities, all classes appear to have the 
same number of training samples (i.e., classes appear equally 
likely).  This is implemented in steps 8, 9, and 10 of the 
KNNANN training algorithm.  To illustrate, consider the 
special case where the number of samples from class i that 
belongs to attractor L is P0 M(i) for all i where P0 is any 
fractional constant.  Then p(i, L) will equal 1/Nc for all i. 
 The parameter γ(i) is used to control the amount of 
attractor overlap.  It also influences the number of attractors 
that will be determined.  See the second "if-statement" in step 9 
of the KNNANN Training algorithm.  Note that any of the 
feature vectors, which have not been flagged in step 9, have the 
potential to be selected as an attractor center.  If a feature 
vector belonging to class i is within radius γ(i) r(L) of the 
center of attractor L, it is flagged so it cannot be selected as a 
new attractor center in subsequent passes through the 
algorithm.  Consequently, if γ(i) = 0, then every feature vector 
belonging to class i will be selected as an attractor center.  For 
γ(i) = 0, observe that attractors, whose centers have been 
selected from class i, have the potential for large overlap 
because a new attractor center is permitted to be very near an 
existing attractor center.  In contrast, for γ(i) = 1, observe that 
attractors, whose centers have been selected from class i, have 
a more limited potential to overlap because a new attractor 
center must be at least a full radius away from all existing 
attractor centers. 
 To reduce the number of attractors that must be stored and 
searched during evaluation, it is recommended to use 
0.5 < γ(i) < 1 when M(i) is large.  To make maximum use of 
class i data when M(i) is small, it is recommended that γ(i) = 0.   
 Note when γ(i) = 1 for all i, a minimal number of 
attractors is generated; and when γ(i) = 0 for all i, the largest 
number of attractors is generated.  In practice, γ(i) is selected 
by trial and error.  Typically, for networks trained with 1000 to 
4000 feature vectors, γ(i) is selected so that network will have 
between 250 and 500 attractors.  Note that training time 
decreases substantially as γ(i) becomes large because more 
vectors are flagged for removal as attractors are selected; this is 

especially useful for large training sets.  It is instructive to note 
that the number of passes through the training algorithm (i.e., 
the number of times steps 3 - 11 are executed) is finite and 
cannot exceed N.  More specifically, if γ(i) are near 0, the 
number of passes is of order N; if γ(i) are near 1, the number of 
passes is of order N1/2. 
 The training algorithm can be made faster by noting that 
only a partial sort is required in step 5. 
 Because the attractors are likely to overlap, an arbitrary 
feature vector is often contained in more than one attractor.  
This is beneficial because it allows one to obtain a better 
estimate of the class probabilities by interpolating the sample 
probabilities from each attractor.  This interpolation is done in 
the KNNANN Evaluation algorithm.  It is a weighted average 
of the attractors' sample probabilities where the weights favor 
the attractors whose centers are nearest the feature vector that 
is being classified. 
 The design parameter h, the radius expansion factor that is 
used in the KNNANN Evaluation algorithm (Eq 12), controls 
which attractors to associate with the feature vector that is 
being classified.  If the feature vector is not contained in any 
attractor, it is considered as statistically dissimilar to the 
training set and, consequently, the class is declared as 
unknown.  However, because the design of the network was 
based on a finite training set, it is statistically possible for a 
new feature vector not to be contained in any attractor but near 
the perimeter of some of them.  The expansion factor is used to 
increase an attractor's radius of influence so that it will capture 
these nearby feature vectors.  In addition it permits more 
attractors to be involved in the interpolation process.   
 

IV. ODFC 
 
 The ODFC uses the same notation from Eqs 1 and 2.  
However the feature vector is augmented with an additional 
component, which is set to unity.   Namely, 

xn+1(k) = 1                                                                    (21) 
 
 As will be obvious later, the linear coefficient that 
multiplies this component acts as an offset bias and allows the 
hyperplane (as observed in the original n-dimensional feature 
space) to optimally shift and better align with class boundaries. 
For the remaining ODFC sections, x is assumed to be the 
augmented (n+1)-dimensional feature vector.   
 Define a bank of coefficient vectors as 
 

c(i, j) = the j-th coefficient vector associated               (22) 
             with class i 
          = (n+1)-dimensional column vector 

where  
i = 1, 2, ... Nc and  j = 1, 2, ... Nf(i)                              (23) 
Nf (i) = number of coefficient vectors associated with 
              class i 

 The first n components of c(i, j) define the normal vector 
of a hyperplane in the original n-dimensional feature space.  
The n+1 component of c(i, j) accounts for the shift of the 



  

hyperplane relative to the origin of the n-dimensional feature 
space.  
 Define the output of the filters as the projection of x along 
c(i, j); namely, 
   

s(x, c(i, j)) = c'(i, j) x                                                    (24) 
 

where ' is the matrix-vector transpose operator. 
 The training goal is to determine c(i, j) such that, on the 
average,  s2(x(k), c(i, j))  is large for x(k) belonging to class i 
and is small for x(k) not belonging to class i for j = 1, 2, ... 
Nf(i). 
 Define the correlation matrix 
 

A(i) = ( 1/M(i) )       ∑        x(k) x'(k)                           (25) 
                          x(k)∈class i 

Then 
( 1/M(i) )       ∑      s2(x(k), c)   = c' A(i) c.                   (26) 
               x(k)∈class i 

 
 For clarity, the indices on c(i, j) have been dropped.  The 
solution is found by maximizing J( c ) with respect to c where 
 

                c' A(i) c  
J( c ) =                                                          (27) 
                c' B(i) c 

and  
B(i) = (1 / (Nc - 1) )  ∑   A(m)                                      (28) 
                              m ≠ i 

 
 One notes that the numerator of J( c ) is the sample 
expectation of s2(x, c) over the training set given that x belongs 
to class i.  And the denominator of J( c ) is the sample 
expectation of s2(x, c) over the training set given that x does 
not belongs to class i under the assumption of equally likely 
classes.  That is 
 

             Es [ s
2(x, c) | x ∈class i ] 

J(c) =                                (29) 
             Es [ s

2(x, c) | x ∉class i ] 
 

where Es[.] denotes the sample expectation (or sample mean). 
 One recognizes J( c ) as the Raleigh quotient implying the 
solution is found by solving the generalized eigenvalue 
problem:  

A(i) v - λ B(i) v = 0                                                       (30) 
 
If the eigenvector v and eigenvalue λ is a solution to Eq 30, 
then 

        v' A(i) v         Es [ s
2(x, v) | x ∈class i ]  

λ =   =                  (31) 
         v' B(i) v        Es [ s

2(x, v) | x ∉class i ] 
 
This implies that c(i, 1), c(i, 2), ... c(i, Nf (i)) should be selected 
to be all the eigenvectors whose eigenvalues are large relative 
to 1. 
 If c(i, j) is scaled as follows, 
 

c(i, j) = v / (v' B(i) v)1/2                                                (32) 
 

it is easy to show that, 
 

Es[ s
2(x, c(i, j)) ] = λ    for x ∈ class i                          (33) 

 
Es[ s

2(x, c(i, j)) ] = 1    for x ∉ class i 
 

Selection of eigenvectors for c(i, j) 
 
The procedure for determining which eigenvectors to select 
uses two selectable design parameters, H and K.  All 
eigenvectors are selected whose eigenvalues are greater than 
H.  However, if more than K eigenvectors have been selected, 
only the eigenvectors corresponding to the K largest 
eigenvalues are kept.  Because A(i) and B(i) are (n+1) x (n+1) 
matrices, the maximum number of eigenvectors is n+1.  
Consequently Nf (i) obeys 0 ≤ Nf (i) ≤ K ≤ n+1.  In our 
applications the choices of H = 2.0 and K = min(5, n+1) have 
performed well.  If no eigenvalues are greater than H (i.e., 
Nf(i) = 0), then one selects the eigenvector corresponding to 
the maximum eigenvalue (so Nf(i) will be at least 1).  When the 
eigenvalues are not large, the implication is that the features 
are not providing good discrimination and classifier 
performance is generally poor.   
 Finally, the selected eigenvectors are scaled as described 
above in Eq 32 and stored in c(i, j). 
 The ODFC training process, described by Eqs 25 to 32, is 
repeated for i = 1, 2, ... Nc. 
 
Conditioning matrix A(i) 
 
 If the number of class samples is sufficiently large and the 
features are linearly independent, then A(i) and B(i) are real 
symmetric positive definite matrices.  Fast and accurate 
computer routines for solving the generalized eigenvalue 
problems having such matrices are readily available in many 
linear algebra software packages (e.g., IMSL and MATLAB).  
To increase robustness to random errors on the feature vector 
and mitigate the possibility of ill-conditioning when solving 
the generalized eigenvalue problem, the first n diagonal 
elements of A(i) are multiplied by factor (1 + ε) prior to 
generating B(i).  One should try several values for ε and choose 
the one that gives the best results with a test set of feature 
vectors.  In many of our applications the choice of ε = 0.0025 
has performed well. 
 
Summary of the ODFC Training Process 
 
  The ODFC Training process is summarized as follows.  
Initially augment each training feature vector with one 
additional component and set it equal to 1. 
 
For i = 1, 2, ...Nc 

1.  Compute A(i) from Eq 25. 



  

2.  As described above in subsection "Conditioning matrix 
A(i),"condition the diagonal elements of A(i). 

3.  Calculate B(i) by  Eq 28. 
4.  Solve for the eigenvectors and eigenvalues of Eq 30. 
5.  As described above in subsection "Selection of 

eigenvectors for c(i, j)," choose parameters H and K and 
use them to select the appropriate subset of Nf(i)  
eigenvectors. 

6.  According to Eq 32, scale the selected eigenvectors and 
save them in c(i, j) for j = 1, 2,  ... Nf(i).   

End of For i loop 
      
ODFC Evaluation process 
 
 Using c(i, j) for i = 1, 2, ... Nc and j = 1, 2, ... Nf (i), the 
class of a new feature vector x is determined as follows.  
Define 

z( i | x ) =  max ( | c'(i, j) x | )                                       (34)                        
                     j 
 
Imax  = argmax( z( i | x )  ) 
                   i 
  
Iref  = argmax( z( i | x ) ) 
           i ≠ Imax 
 
T = a designer selectable classification threshold. 

 
 The classification rule is given by: 
If z(Imax | x) ≥ T z(Iref | x), then class = Imax; otherwise the 
class is considered uncertain. 
 
 For a two-class problem (e.g., class 1 = target and 
class 2 = nontarget), a classification threshold, T, can be 
introduced to adjust the probability of classification relative to 
the probability of false alarm.  The classification rule is given 
by: 
If z( 1 | x ) >  T z( 2 | x ), then class = 1; otherwise class = 2. 
 

V. CONCLUSION 
 

This paper presented detailed descriptions of the K-Nearest 
Neighbor Attractor-based Neural Network (KNNANN) and the 
Optimal Linear Discriminatory Filter Classifier.  Both are 
feature-based classifiers whose training is based on supervised 
learning.   
 

The KNNANN is a probabilistic-based neural network that 
constructs a joint histogram, which approximates the joint 
posteriori class probability density function.  Some novel 
attributes of the KNNANN are: 

 (1) A training procedure that balances the size of the 
attractors so that they are small enough to resolve the 
underlying probability density but large enough to hold a 
sufficient number of training samples to accurately estimate the 
class probabilities. 

(2) A compensation method for unbalanced training data 
sets (i.e., data sets where the number of samples in each class 
differ substantially). 

(3) An interpolation method that estimates class 
probabilities by combining sample probabilities of several 
overlapping attractors. 

The ODFC employs multiple linear classifiers that are 
combined to determine the class of a feature vector.  
Coefficients of the linear filters are derived by solving a 
generalized eigenvalue problem. 

Because the KNNANN uses hyperspheres to define class 
boundaries in feature space and the ODFC uses hyperplanes, 
the two classifiers are complementary and have performed well 
when "anded." 

The training algorithms for both classifiers are not iterative 
and computationally very fast.  This allows one to use the 
classifiers to evaluate a large number of feature subsets taken 
from a large set of candidate features and select the subset that 
performs the "best" or "good enough," thereby overcoming 
Bellman's well-known curse of dimensionality. 
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